Bombeo Mecánico – Diseño
Es uno de los métodos de producción más utilizados (80-90%), el cual su principal característica es la de utilizar una unidad de bombeo para transmitir
movimiento a la bomba de subsuelo a través de una sarta de cabillas y
mediante la energía suministrada por un motor. Los componentes del bombeo mecánico esta compuesto básicamente por las
siguientes partes: unidad de bombeo, motor (superficie), cabillas,
bomba de subsuelo, anclas de tubería, tubería de producción (subsuelo).
Un equipo de bombeo mecánico (también conocido como “balancín” o “cigüeña”) produce un movimiento
de arriba hacia abajo (continuo) que impulsa una bomba sumergible en
una perforación. Las bombas sumergibles bombean el petróleo de manera
parecida a una bomba que bombea aire a un neumático. Un motor,
usualmente eléctrico, gira un par de manivelas que, por su acción, suben
y bajan un extremo de una eje de metal. El otro extremo del eje, que a
menudo tiene una punta curva, está unido a una barra de metal
que se mueve hacia arriba y hacia abajo. La barra, que puede tener una
longitud de cientos de metros, está unida a una bomba de profundidad en
un pozo de petróleo. El balancín de producción, que en apariencia y
principio básico de funcionamiento se asemeja al balancín de perforación
a percusión, imparte el movimiento de sube y baja a la sarta de
varillas de succión que mueve el pistón de la bomba, colocada en la
sarta de producción o de educción, a cierta profundidad del fondo del
pozo.
La válvula fija
permite que el petróleo entre al cilindro de la bomba. En la carrera
descendente de las varillas, la válvula fija se cierra y se abre la
válvula viajera para que el petróleo pase de la bomba a la tubería de
educción. En la carrera ascendente, la válvula viajera se cierra para mover
hacia la superficie el petróleo que está en la tubería y la válvula
fija permite que entre petróleo a la bomba. La repetición continua del
movimiento ascendente y descendente (emboladas) mantiene el flujo hacia
la superficie. Como en el bombeo mecánico hay que balancear el ascenso y
descenso de la sarta de varillas, el contrapeso puede ubicarse en la
parte trasera del mismo balancín o en la manivela. Otra modalidad es el
balanceo neumático, cuya construcción y funcionamiento de la recámara se
asemeja a un amortiguador neumático; generalmente va ubicado en la
parte delantera del balancín. Este tipo de balanceo se utiliza para
bombeo profundo.
Equipo de Subsuelo
El equipo de
subsuelo es el que constituye la parte fundamental de todo el sistema de
bombeo. La API ha certificado las cabillas, las tuberías de producción y
bomba de subsuelo.
![bm1 Bombeo Mecánico Diseño](http://lh3.ggpht.com/_SAPQ7vwtsnA/SkbS_ph6bMI/AAAAAAAAAMo/IpqzXSKxhLg/bm1_thumb%5B7%5D.jpg?imgmax=800)
Tubería de Producción. La tubería de producción tiene por objeto conducir el fluido que se esta bombeando desde el fondo del pozo
hasta la superficie. En cuanto a la resistencia, generalmente la
tubería de producción es menos crítica debido a que las presiones del
pozo se han reducido considerablemente para el momento en que el pozo es
condicionado para bombear.
Cabillas o Varillas de Succión. La
sarta de cabillas es el enlace entre la unidad de bombeo instalada en
superficie y la bomba de subsuelo. Las principales funciones de las
mismas en el sistema de bombeo mecánico son: transferir energía,
soportar las cargas y accionar la bomba de subsuelo. Las principales
características de las cabillas son:
a) Se fabrican en longitudes de 25 pies, aunque también pueden manufacturarse de 30 pies.
b) Se dispone de
longitudes de 1, 2, 3, 4, 6, 8, 10 y 12 pies denominados por lo general
“niples de cabilla” que se utilizan para complementar una longitud
determinada y para mover la localización de los cuellos de cabillas, a
fin de distribuir el desgaste de la tubería de producción.
c) Se fabrican en diámetros de 5/8, 3/4, 7/8, 1, 1-1/8 de pulgadas.
De acuerdo a las
especificaciones de la API, las cabillas de acero sólido es del tipo de
cabillas más utilizado y ha sido estandarizada por la API, sus extremos
son forjados para acomodar las roscas, un diseño que desde 1926 no ha
cambiado hasta la fecha. Todos los efectos negativos inciden en la vida
útil de las uniones de las cabillas de succión, y hacen que el 99% de
los rompimientos por fatiga en los pines de la cabilla, lo cual es
ocasionado por un incorrecto enrosque de la misma. Entre las principales
fallas podemos encontrar: tensión, fatiga y pandeo. En la producción de
crudos pesados por bombeo mecánico en pozos direccionales y algunos
pozos verticales, se presenta este tipo de problema (pandeo), la corta
duración de los cuellos y la tubería debido al movimiento
reciproco-vertical o reciprocante (exclusivo en el bombeo mecánico) del
cuello en contacto con la tubería causando un desgaste o ruptura de
ambas. Para el pandeo (Buckling de cabillas) se deben colocar de 1 o 2
centralizadores por cabilla según sea la severidad. Hay cabillas que
tienen centralizadores permanentes.
Entre los tipos
de cabillas que existen en el mercado están: Electra, Corod (continua) y
fibra de vidrio. Las cabillas continuas (Corod) fueron diseñadas sin
uniones para eliminar totalmente las fallas en el PIN (macho) y la
hembra para incrementar la vida de la sarta. La forma elíptica permite
que una gran sarta de cabillas sea enrollada sobre rieles especiales de
transporte sin dañarlas de manera permanente. Otra ventaja de este tipo
de varilla es su peso promedio más liviano en comparación a las API.
Ventajas
- a) La ausencia de cuellos y uniones elimina la posibilidad de fallas por desconexión.
- b) La falta de uniones y protuberancias elimina la concentración de esfuerzos en un solo punto y consiguiente desgaste de la unión y de la tubería de producción.
- c) Por carecer de uniones y cuellos, no se presentan los efectos de flotabilidad de cabillas.
- a) Presentan mayores costos por pies que las cabillas convencionales.
- b) En pozos completados con cabillas continuas y bomba de tubería, la reparación de la misma requiere de la entrada de una cabria convencional.
Anclas de Tubería. Este
tipo esta diseñado para ser utilizados en pozos con el propósito de
eliminar el estiramiento y compresión de la tubería de producción, lo
cual roza la sarta de cabillas y ocasiona el desgaste de ambos.
Normalmente se utiliza en pozos de alta profundidad. Se instala en la
tubería de producción, siendo éste el que absorbe la carga de la
tubería. Las guías de cabillas son acopladas sobre las cabillas a
diferentes profundidades, dependiendo de la curvatura y de las
ocurrencias anteriores de un elevado desgaste de tubería.
Bomba de Subsuelo. Es
un equipo de desplazamiento positivo (reciprocante), la cual es
accionada por la sarta de cabillas desde la superficie. Los componentes
básicos de la bomba de subsuelo son simples, pero construidos con gran
precisión para asegurar el intercambio de presión y volumen a través de
sus válvulas. Los principales componentes son: el barril o camisa,
pistón o émbolo, 2 o 3 válvulas con sus asientos y jaulas o retenedores
de válvulas.
Pintón. Su
función en el sistema es bombear de manera indefinida. Esta compuesto
básicamente por anillos sellos especiales y un lubricante especial. El
rango de operación se encuentra en los 10K lpc y una temperatura no
mayor a los 500°F.
Funciones de la Válvula
- a) Secuencia de operación de la válvula viajera: permite la entrada de flujo hacia el pistón en su descenso y posteriormente hacer un sello hermético en la carrera ascendente permitiendo la salida del crudo hacia superficie.
- b) Secuencia de operación de la válvula fija: permite el flujo de petróleo hacia la bomba, al iniciar el pistón su carrera ascendente y cerrar el paso el fluido dentro del sistema bomba-tubería, cuando se inicia la carrera descendente del pistón.
Equipos de Superficie
La unidad de
superficie de un equipo de bombeo mecánico tiene por objeto transmitir
la energía desde la superficie hasta la profundidad de asentamiento de
la bomba de subsuelo con la finalidad de elevar los fluidos desde el
fondo hasta la superficie. Estas unidades pueden ser de tipo balancín o
hidráulicas. Los equipos que forman los equipos de superficie se
explican a continuación:
Unidad de Bombeo
(Balancín). Es una máquina integrada, cuyo objetivo es de convertir el
movimiento angular del eje de un motor o reciproco vertical, a una
velocidad apropiada con la finalidad de accionar la sarta de cabillas y
la bomba de subsuelo. Algunas de las características de la unidad de
balancín son:
- a) La variación de la velocidad del balancín con respecto a las revoluciones por minuto de la máquina motriz.
- b) La variación de la longitud de carrera.
- c) La variación del contrapeso que actúa frente a las cargas de cabillas y fluidos del pozo.
- Para la selección de un balancín, se debe tener los siguientes criterios de acuerdo a la productividad y profundidad que puede tener un pozo:
Productividad
- a) Los equipos deben ser capaces de manejar la producción disponible.
- b) Los equipos de superficie deben soportar las cargas originadas por los fluidos y equipos de bombeo de pozo.
- c) Factibilidad de disponer de las condiciones de bombeo en superficie adecuada.
Profundidad
- a) La profundidad del pozo es un factor determinante de los esfuerzos de tensión, de elongación y del peso.
- b) Afecta las cargas originadas por los equipos de producción del pozo.
- c) Grandes profundidades necesitan el empleo de bombas de subsuelo de largos recorridos.
- La disponibilidad de los balancines va a depender fundamentalmente sobre el diseño de los mismos. Los balancines sub-diseñados, limitan las condiciones del equipo de producción y en consecuencia la tasa de producción del pozo. Los balancines sobre-diseñados, poseen capacidad, carga, torque y carrera están muy por encima de lo requerido y pueden resultar muchas veces antieconómicos.
Clasificación de los Balancines
Balancines convencionales. Estos
poseen un reductor de velocidad (engranaje) localizado en su parte
posterior y un punto de apoyo situado en la mitad de la viga.
Balancines de geometría avanzada. Estos
poseen un reductor de velocidad en su parte delantera y un punto de
apoyo localizado en la parte posterior del balancín. Esta clase de
unidades se clasifican en balancines mecánicamente balanceados mediante
contrapesos y por balancines balanceados por aire comprimido. Los
balancines de aire comprimido son 35% más pequeñas y 40% mas livianas
que las que usan manivelas. Se utilizan frecuentemente como unidades
portátiles o como unidades de prueba de pozo (costafuera).
Características de las Unidad de Bombeo
Convencional | Balanceada por aire | Mark II |
1. Muy eficiente | 1. La de menor eficiencia | 1. Muy eficiente |
2. Muy confiable debido a su diseño simple | 2. Las más compleja de las unidades | 2. Igual que la convencional |
3. La más económica | 3. La más costosa | 3. Moderadamente costosa |
Diseño de Equipos de Bombeo Mecánico
Es un
procedimiento analítico mediante cálculos, gráficos y/o sistemas
computarizados para determinar el conjunto de elementos necesarios en el
levantamiento artificial de pozos accionados por cabilla. La función de
este procedimiento es seleccionar adecuadamente los equipos que
conforman el sistema de bombeo mecánico a fin de obtener una operación
eficiente y segura con máximo rendimiento al menor costo posible.
Paso 1: se
debe seleccionar el tamaño de la bomba, el diámetro óptimo del pistón,
bajo condiciones normales. Esto va a depender de la profundidad de
asentamiento de la bomba y el caudal de producción (Ver Tabla 1). Nota: Todas las tablas y gráficas los colocaré al final de este post para que puedan ser descargados.
Paso 2: La
combinación de la velocidad de bombeo (N) y la longitud de la carrera o
embolada (S), se selecciona de acuerdo a las especificaciones del
pistón. Se asume una eficiencia volumétrica del 80%. (Ver gráfico 1).
Paso 3: Se
debe considerar una sarta de cabillas (se debe determinar el porcentaje
de distribución si se usa más de dos diámetros de cabilla) y el
diámetro de pistón, se determina un aproximado de la carga máxima para
el sistema en estudio.
Paso 4: Chequear
el valor de factor de impulso para la combinación velocidad de bombeo
(N) y longitud de carrera (S) establecidos en el Paso 2.
Paso 5: Cálculo
de la carga máxima en la barra pulida. Para este propósito será
necesario obtener cierta data tabulada de acuerdo a los datos
establecidos en los pasos previos. Primero se determinará el peso de las
cabillas por pie y la carga del fluido por pie. Ahora se
calcula el peso de las cabillas en el aire (Wr), la carga dinámica en
las cabillas (CD) y la carga del fluido (CF) a la profundidad objetivo.
Wr = peso cabillas (lb/ft) x Prof. (ft)
CD = F.I. x Wr (lb) —–> Donde F.I. (Factor de Impulso)
CF = peso fluido (lb/ft) x Prof. (ft)
Carga máxima barra pulida = CD + CF
Paso 6: Cálculo de la carga mínima de operación (CM), el contrabalanceo ideal y torque máximo.
CM = Disminución de la carga debido a la aceleración (DC) – fuerza de flotación (FF)
DC = Wr x (1-C) —–> Donde C = (N^2 x S)/70500
FF = Wr x (62,5/490) —–> Valor constante
Para el
contrabalanceo ideal se debe proporcionar suficiente efecto de
contrabalanceo para darle suficiente valor de carga, el cual va a ser el
promedio entre el máximo (carga máx. barra pulida) y el mínimo recién
calculado.
Entonces,
Contrabalanceo ideal = promedio de carga (entre máx. y min) – la carga mínima.
Torque máx. = Contrabalanceo ideal x Punto medio de la longitud de carrera (S/2).
Paso 7: Estimación
de poder del motor eléctrico. Conocida la profundidad de operación,
°API del crudo y el caudal requerido de producción, se obtiene una
constante que es multiplicada por el caudal de producción (Ver gráfico
3). Este valor obtenido son los HP necesarios justos para levantar el
caudal requerido. Lo que se recomienda es que este valor obtenido se
incremente de 2 a 2,5 veces para tener un factor de seguridad.
Paso 8: Cálculo
de desplazamiento de la bomba. El valor obtenido de P sería el valor de
caudal de producción si la bomba trabaja al 100% de eficiencia. El
diseño de la bomba debe tener al menos el 80% de eficiencia. En crudos
pesados debe tener un máximo de 18 strokes/minutos (promedio 15° API).
P = C S N
P = Desplazamiento de la bomba
C = Constante de la bomba, depende del diámetro del pistón
N = Velocidad de bombeo (SPM)
Paso 9: Profundidad
de asentamiento de la bomba (Método Shell, Ver Tabla 3). Esto dependerá
enormemente de la configuración mecánica del pozo. Si este método no
cumple, por lo general se asienta a 60 o 90 pies por encima del
colgador. Otras bibliografías hacen referencia que se asienta 300 pies
por debajo del nivel de fluido.
No hay comentarios:
Publicar un comentario